
Intros + Lambda Calculus
CS 130 FA 21

10.1.21

Agenda
Setup

What is the lambda calculus

Syntax

Alpha/Beta reductions

PA0 tips

Agenda
Setup

What is the lambda calculus

Syntax

Alpha/Beta reductions

PA0 tips

Setup
HW0 will have you manually evaluate lambda calculus terms

Elsa checks that reductions are valid

Elsa - what is it and how do I use it?

Elsa is implemented as a Haskell package

How do I run elsa and do the HW?
Options:

1. SSH into ieng6
2. Install stack locally
3. Use online demo

SSH into ieng6
Pros:

● Should have everything installed already
● Standardized and easy for us to help us with

Cons:

● The wifi sucks and you need the internet?

Install stack locally
Pros:

● Everything can be done offline
● We will use Haskell throughout the class, you might want it locally

Cons:

● Installing stack might be annoying
● Unix: should be easy
● Mac: should also be easy with brew
● Windows: ??
● WSL: Didn’t work last time I tried it (like 2 years ago), but might work now?

https://docs.haskellstack.org/en/stable/README/#the-haskell-tool-stack

Online demo
Pros:

● Will “just work”

Cons:

● Very clumsy

http://goto.ucsd.edu/elsa/index.html

Doing the homework
make test will check your work

make turnin or git push turns in the homework

Do not use =*> or =~> operators!

Agenda
Setup

What is the lambda calculus

Syntax

Alpha/Beta reductions

PA0 tips

What is the lambda calculus
Very simple programming language

Still Turing complete

What is the lambda calculus
It might look silly but...

● Simple formal model of programming
● Provides a minimal framework for exploring and reasoning about various PL

concepts
● Fundamental to lots of PL research (especially functional programming)
● Definitely on the exam

Agenda
Setup

What is the lambda calculus

Syntax

Alpha/Beta reductions

PA0 tips

Syntax
x : Variable

(\x -> M) : Function abstraction (M is a lambda term)

(M N) : Function application (M, N are lambda terms)

All we can do is declare functions and apply functions!

Functions are first-class: We can apply functions to other functions, and a function
can return another function

Syntax
\a -> (\b -> b) -- Function that takes a parameter “a” and
 -- returns a function that takes a param “b”
\a -> \b -> b -- Syntactic sugar for above
\a b -> b -- More syntactic sugar

Agenda
Setup

What is the lambda calculus

Syntax

Alpha/Beta reductions

PA0 tips

Alpha/Beta reductions
Beta step: Calling a function

Alpha step: Renaming a variable inside a function

Beta step
What do we do with (\x -> x) y ?

We can substitute y for x inside the body of the function: we just get y

More examples:

(\a b c -> b) d becomes (\b c -> b)

(\b c -> b) e becomes (\c -> e)

(\a b c -> b) d e becomes (\c -> e)

In Elsa

In Elsa

In Elsa

What if things get weird?

Can we still perform
a beta reduction?

This doesn’t work!

“y” the argument is a concrete value

“x” and “y” in the function are purely symbolic -- they just refer to the first and
second arguments. So when we substitute “y” for “x”, we are using the same name
to refer to two different things. This doesn’t make sense!

We need to be able to rename variables
Alpha steps let you do just this:

We use alpha steps to enable beta steps

We use alpha steps to enable beta steps

Agenda
Setup

What is the lambda calculus

Syntax

Alpha/Beta reductions

PA0 tips

PA0 Overview
Goal: Simplify lambda calculus expressions via alpha/beta steps

You will need to understand:

- How to apply alpha/beta steps
- The definitions in each source file

Be aware: the lambda calculus is weird! This might take time

PA0 Overview
Each problem will define higher-level concepts with lambda terms:

Most of these definitions will not make sense on their own!

TRUE and FALSE make no sense without the definition of ITE -- you need to read
all the definitions and try to figure out how they work together

PA0 overview
Elsa also offers a =d> operator

This allows you to replace symbols with their definition -- this is key! Use it early

However, you can also make the problems too
complicated...
If we replace all definitions, we might end up with too much complexity!

Which of these is easier to work with? Why?

