Intros + Lambda Calculus

CS 130 FA 21
10.1.21

Agenda

Setup

What is the lambda calculus
Syntax

Alpha/Beta reductions

PAO tips

Agenda

Setup

What is the lambda calculus
Syntax

Alpha/Beta reductions

PAO tips

Setup

HWO will have you manually evaluate lambda calculus terms

Elsa checks that reductions are valid

Elsa - what is it and how do | use it?

Elsa is implemented as a Haskell package

[J ucsd-progsys / elsa @Watch~ 6 HStar 123 YFork 9
<> Code Issues 2 Pull requests 0 Actions Projects 0 Wiki Security Insights

Elsa is a lambda calculus evaluator

lambda-calculus reduction haskell-learning haskell
-0- 47 commits ¥ 2 branches ™ 0 packages © 0 releases A2 3 contributors afs MIT
Branch: master ~ New pull request Create new file = Upload files Find file
3 ranjitjhala bump stack Its Latest commit dbac992 5 days ago
| src add colored status output 12 months ago
il tests update to stack Its-13.11 12 months ago
£ .gitignore add colored status output 12 months ago
E) LICENSE add files 3 years ago
E) README.md whereami 3 months ago
[£) Setup.hs add files 3 years ago
[E) elsa.cabal add colored status output 12 months ago
E) stack.yaml bump stack Its 5 days ago

README.md

elsa: A tiny language for understanding the lambda-calculus

[language, library, mit, program] [Propose Tags]

elsa is a small proof checker for verifying sequences of reductions of lambda-calculus terms. The goal is to help Versions [faq]
students build up intuition about lambda-terms, alpha-equivalence, beta-reduction, and in general, the notion of 0.1.0.0,0.1.01,0.2.0.0,02.0.1,0.210,0.2.1.1,0.2.1.2
computation by substitution. Dependencies
[Skip to Readme] ansi-terminal, array, base (==4."), dequeue, directory, elsa, filepath, hashable, json,
megaparsec (>=7.0.4), mtl, unordered-containers [details]
Modules License
MIT
[Index] [Quick Jump] Author
tanguage Ranjit Jhala
Language.Elsa
Language.Elsa.Eval Malntalner
Language.Elsa.Parser Jhala@cs.ucsd.edu
Language.Elsa.Runner Category
Language.Elsa.Types Language
Home page
Downloads http://github.com/ucsd-progsys/elsa
Source repo
e elsa-0.2.1.2.tar.gz [browse] (Cabal source package) head: git clone https://github.com/ucsd-progsys/elsa/
® Package description (as included in the package) Uploaded

by ranjitjhala at Mon Apr 1 19:56:43 UTC 2019

Distributions
For package maintainers and hackage trustees Nix0S:0.2.1.2

Maintainer’s Corner

e edit package information Executables

elsa

How do | run elsa and do the HW?

Options:

1. SSHinto ieng6
2. Install stack locally
3. Use online demo

SSH into ieng6

Pros:

e Should have everything installed already
e Standardized and easy for us to help us with

Cons:

e The wifi sucks and you need the internet?

Install stack locally

Pros:

e Everything can be done offline
e \We will use Haskell throughout the class, you might want it locally

Cons:

Installing stack might be annoying

Unix: should be easy

Mac: should also be easy with brew

Windows: ?7?

WSL: Didn’t work last time | tried it (like 2 years ago), but might work now?

https://docs.haskellstack.org/en/stable/README/#the-haskell-tool-stack

Online demo

Pros:
o Will “just work”
Cons:

e \ery clumsy

http://goto.ucsd.edu/elsa/index.html

Doing the homework

make test will check your work
make turnin or git push turns in the homework

Do not use =*> or =~> operators!

Agenda

Setup

What is the lambda calculus
Syntax

Alpha/Beta reductions

PAO tips

What is the lambda calculus

Very simple programming language

Still Turing complete

What is the lambda calculus

It might look silly but...

e Simple formal model of programming
e Provides a minimal framework for exploring and reasoning about various PL
concepts

e Fundamental to lots of PL research (especially functional programming)
e Definitely on the exam

Agenda

Setup

What is the lambda calculus
Syntax

Alpha/Beta reductions

PAO tips

Syntax

X : Variable
(\x -> M) : Function abstraction (M is a lambda term)

(M N) : Function application (M, N are lambda terms)

All we can do is declare functions and apply functions!

Functions are first-class: We can apply functions to other functions, and a function
can return another function

Syntax

\a -> (\b -> b) -- Function that takes a parameter “a” and
-- returns a function that takes a param “b”
\a -> \b -> b -- Syntactic sugar for above

\a b ->0b -- More syntactic sugar

Agenda

Setup

What is the lambda calculus
Syntax

Alpha/Beta reductions

PAO tips

Alpha/Beta reductions

Beta step: Calling a function

Alpha step: Renaming a variable inside a function

Beta step

What do we do with (\x -> x) y?

We can substitute y for x inside the body of the function: we just get y
More examples:

(\a bc->b) d becomes (\b ¢ -> b)

(\b ¢ -> b) e becomes (\c -> e)

(\a bc ->b) de becomes (\c -> e)

In Elsa

eval beta :
(\f x ->Ff (f X)) g

A WN B

In Elsa

eval beta :

(\f x -> f (f x)) 4
=b> \x -> g (g x)

Lunph WN R

In Elsa

eval beta :

(\f x -> f (f X)) g
b \x > g (xX)

nAhHE WN =

What if things get weird?

eval beta? :
(\>Xyz->zyXx)y zXx -- uh oh|

D WN R

Can we still perform
a beta reduction?

(\xyz ->zy
b> (\y z -> z

eval beta2 :

-ITON M < WIN

eval beta2 :
(\ xyz ->zyXx)yzX
E3 4 =b> (\v z ->zvyy)zx
5

wnN =

This doesn’t work!

[T}

y” the argument is a concrete value

“x” and “y” in the function are purely symbolic -- they just refer to the first and

[T) (13 1)

second arguments. So when we substitute “y” for “x”, we are using the same name
to refer to two different things. This doesn’t make sense!

We need to be able to rename variables

Alpha steps let you do just this:

7 eval alpha_equiv :
8 (\x -> x)

9 =a> (\y ->y)

10 =a> (\z -> z)

We use alpha steps to enable beta steps

eval beta2 :
(\>Xyz->zyXx)y zXx -- uh oh|

D WN =

We use alpha steps to enable beta steps

1

2 eval beta2 :

3 (\ X yz->zyXx)yzX

- =a> (\xaz->zax)yzx
5 =b> (\az ->z ay) z x

Agenda

Setup

What is the lambda calculus
Syntax

Alpha/Beta reductions

PAO tips

PAQO Overview

Goal: Simplify lambda calculus expressions via alpha/beta steps

You will need to understand:

- How to apply alpha/beta steps
- The definitions in each source file

Be aware: the lambda calculus is weird! This might take time

PAQO Overview

Each problem will define higher-level concepts with lambda terms:

TRUE
ot FALSE
ITE
NOT
AND
OR

\‘\X y ->

\b xy ->

\b xy ->byXx

\bl b2 -> ITE bl b2 FALSE
\bl b2 -> ITE bl TRUE b2

Most of these definitions will not make sense on their own!

TRUE and FALSE make no sense without the definition of ITE -- you need to read
all the definitions and try to figure out how they work together

PAO overview

Elsa also offers a =d> operator

This allows you to replace symbols with their definition -- this is key! Use it early

- DO NOT MODIFY THIS SEGMENT

ot TRUE
let FALSE \X Yy -> Y
ITE X yi—=bhay
NOT \bx yi—>"h yox
AND \bl b2 -> ITE bl b2 FALSE
\bl b2 -> ITE bl TRUE b2

- YOU SHOULD ONLY MODIFY THE TEXT BELOW, JUST THE PARTS MARKED AS COMMENTS

eval not_true :
NOT TRUE
- (a) fill in your reductions here
=d> FALSE

However, you can also make the problems too
complicated...

If we replace all definitions, we might end up with too much complexity!

Which of these is easier to work with? Why?

eval not_true :
NOT TRUE
=d> (\b x y -> b y x) TRUE

eval not _true :
NOT TRUE
=d> (\b xy ->byx) (\xy -> x)

