
CSE 130, Spring 2014
Instructor: Ranjit Jhala

Name/ID

Midterm Exam

Instructions: read these first!

Do not open the exam, turn it over, or look inside until you are told to begin.

Switch off cell phones and other potentially noisy devices.

Write your full name on the line at the top of this page. Do not separate pages.

You may refer to a double-sided “cheat sheet”, but no computational devices (such as
laptops, calculators, phones, iPads, friends, enemies, pets, lovers).

Read questions carefully. Show all work you can in the space provided.

Where limits are given, write no more than the amount specified.
The rest will be ignored.

Avoid seeing anyone else’s work or allowing yours to be seen.

Do not communicate with anyone but an exam proctor.

If you have a question, raise your hand.

When time is up, stop writing.

The points for each part are rough indication of the time that part should take.

Question Points Score

1 35

2 20

3 25

Total: 80

CSE 130, Spring 2014 Midterm Exam Page 1 of 7

1. [35 points] For each of the following OCaml programs, write down the type or value of the given variable, or circle
“Error” if you think there is a type or runtime error.

(a) [5 points]
let ans =

let x = 10 in
let f y z = x + y + z in
let x = 100 in
let h = f 5 in
h x

Error Value ans=

(b) [6 points]
let rec chain fs = match fs with
| [] -> fun x -> x
| f::fs’ -> fun x -> f (chain fs’ x)

Error Type chain :

(c) [5 points]
let ans = chain [(fun x -> x * x)

; (fun x -> 16 * x)
; (fun x -> x + 1)
] 1

Error Value ans=

(d) [3 points]
type ’a tree = Leaf | Node of ’a * ’a tree * ’a tree

let ans0 = Node (2, Node (1, Leaf, Leaf)
, Node (3, Leaf, Leaf))

Error Type ans0 :

(e) [5 points]
let rec flerb xs = match xs with

| [] -> Leaf
| x::xs’ -> Node (x, Leaf, flerb xs’)

Error Type flerb :

CSE 130, Spring 2014 Midterm Exam Page 2 of 7

(f) [3 points]
let ans = flerb [0;1;2]

Error Value ans=

(g) [5 points]
let rec glub f t = match t with

| Leaf -> Leaf
| Node (x,l,r) -> Node (f x, glub f l, glub f r)

Error Type glub :

(h) [3 points]
let ans = glub (fun x -> 2 * x) ans0

Error Value ans=

CSE 130, Spring 2014 Midterm Exam Page 3 of 7

2. [20 points] Consider the two functions sum and fac shown below:

let rec sum n = match n with
| 0 -> 0
| n -> n + sum (n-1)

let rec fac n = match n with
| 0 -> 1
| n -> n * fac (n-1)

(a) [5 points] Write a tail recursive version of sum by filling in the blanks below:

let sumTR n =

let rec helper acc n =

| ->

| ->

in

in helper

(b) [5 points] Write a tail recursive version of fac by filling in the blanks below:

let facTR n =

let rec helper acc n =

| ->

| ->

in

in helper

CSE 130, Spring 2014 Midterm Exam Page 4 of 7

(c) [6 points] Spot that pattern! Now write a higher-order function

val foldn : (’a -> int -> ’a) -> ’a -> int -> ’a

that generalizes the tail-recursion in sumTR and facTR, by filling in the blanks below:

let foldn f b n =

let rec helper acc n =

| ->

| ->

in

in helper

(d) [4 points] Your solution for foldn should be such that you can now implement sum and fac without recursion
simply by passing in appropriate parameters to foldn. What are those parameters?

let sum = foldn

let fac = foldn

CSE 130, Spring 2014 Midterm Exam Page 5 of 7

3. [25 points]

In NanoML, we used exceptions at various places, for example, when looking up a variable that did not exist in the
environment. A better approach is to use the ’a option type, defined thus:

type ’a option = None | Some of ’a

(a) [4 points] Now, instead of throwing an exception (who knows where or how or even if it will get caught!) if a
function can possibly fail, we can have it return an option value. For example:

let safeDiv num den = match den with
| 0 -> None
| _ -> Some (num / den)

Since division is undefined (and throws a nasty failure), we instead write a safeDiv that gracefully returns a
None if the result is undefined, and Just i when the denominator is non-zero and hence the division is safe.
What is the type of safeDiv?

Error Type safeDiv :

(b) [5 points] Fill in the blanks to write a version of lookup that returns an option, that is:

val lookup: ’a -> (’a * ’b) list -> ’b option

When you are done, you should get the following behavior:

lookup "a" [("a", 1); ("b", 2), ("a", 10)];;
- : int option = Some 1

lookup "z" [("a", 1); ("b", 2), ("a", 10)];;
- : int option = None

let rec lookup k kvs =

| ->

| ->

CSE 130, Spring 2014 Midterm Exam Page 6 of 7

(c) [4 points] Fill in the blanks to write a function

val lift1 : (’a -> ’b) -> ’a option -> ’b option

such that when you are done, you get the following behavior

lift1 string_of_int (Some 1);;
- : string option = Some "1"

lift1 string_of_int None;;
- : string option = None

let lift1 f xo =

| ->

| ->

(d) [5 points] Fill in the blanks to write a function
val lift2 : (’a -> ’b -> ’c) -> ’a option -> ’b option -> ’c option

such that when you are done, you get the following behavior

lift2 (+) (Some 1) (Some 10);;
- : int option = Some 11

lift2 (+) (None) (Some 10);;
- : int option = None

lift2 (+) (Some 1) (None);;
- : int option = None

lift2 (+) (None) (None);;
- : int option = None

let lift2 f xo yo =

| ->

| ->

CSE 130, Spring 2014 Midterm Exam Page 7 of 7

(e) [7 points] Consider the subset of NanoML given by the type:

type expr = Var of string (* variable *)
| Con of int (* constant *)
| Neg of expr (* negation of an expression *)
| Plus of expr * expr (* sum of two expressions *)

Write an interpreter function

val eval : (string * int) list -> expr -> int option

such that when you are done you get the following behavior:

eval [("x", 1); ("y", 2); ("x", 100)] (Plus (Var "x", Var "y"));;
- int option = Some 3

eval [("x", 1); ("y", 2); ("x", 100)] (Plus (Var "x", Con 20));;
- int option = Some 21

eval [("x", 1); ("y", 2); ("x", 100)] (Plus (Var "x", Var "z"));;
- int option = None

eval [("x", 1); ("y", 2); ("x", 100)] (Neg (Var "y"));;
- int option = Some (-2)

eval [("x", 1); ("y", 2); ("x", 100)] (Neg (Var "z"));;
- int option = None

Note: Your implementation of evalmust not use any match-with expressions other than the one given. Instead,
use lift1 and lift2. You may also use any other functions you have implemented during this exam.

let rec eval env e = match e with

| Var x ->

| Con i ->

| Neg e’ ->

| Plus (e1, e2) ->

