Environments and Closures

Roadmap

Past three weeks:

  • How do we use a functional language?

Next three weeks:

  • How do we implement a functional language?
  • … in a functional language (of course)

This week: Interpreter

  • How do we evaluate a program given its abstract syntax tree (AST)?
  • How do we prove properties about our interpreter (e.g. that certain programs never crash)?










The Nano Language

Features of Nano:

  1. Arithmetic
  2. Variables
  3. Let-bindings
  4. Functions
  5. Recursion










1. Nano: Arithmetic

A grammar of arithmetic expressions:

e ::= n
    | e1 + e2
    | e1 - e2
    | e1 * e2


Examples:

Expression Value
4 ==> 4
4 + 12 ==> 16
(4 + 12) - 5 ==> 11










Representing Expressions and Values

Let’s represent arithmetic expressions as a type:

data Expr = Num Int
          | Add Expr Expr
          | Sub Expr Expr
          | Mul Expr Expr



Let’s represent arithmetic values as a type:

type Value = Int










Evaluating Arithmetic Expressions

We can now write a Haskell function to evaluate an expression:

eval :: Expr -> Value
eval (Num n)     = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2









Alternative representation

Let’s factor out the operators into a separate type

data Binop = Add | Sub | Mul

data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression










QUIZ

Evaluator for alternative representation:

eval :: Expr -> Value
eval (Num n)        = n
eval (Bin op e1 e2) = evalOp op (eval e1) (eval e2)

What’s a suitable type for evalOp?

(A) Binop -> Value

(B) Binop -> Value -> Value -> Value

(C) Binop -> Expr -> Expr -> Value

(D) Binop -> Expr -> Expr -> Expr

(E) Binop -> Expr -> Value


Answer: B










The Nano Language

Features of Nano:

  1. Arithmetic [done]
  2. Variables
  3. Let-bindings
  4. Functions
  5. Recursion










2. Nano: Variables

Let’s add variables!

e ::= n        -- OLD
    | e1 + e2 
    | e1 - e2 
    | e1 * e2
    | x        -- NEW





Let’s extend the representation of expressions:

data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression
          | ???                  -- variable










type Id = String

data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression
          | Var Id               -- variable





Now let’s extend the evaluation function!










QUIZ

What should the following expression evaluate to?

x + 1

(A) 0

(B) 1

(C) Runtime error


Answer: C










Environment

An expression is evaluated in an environment

  • It’s a dictionary that maps variables to values
["x" := 0, "y" := 12, ...]


We can represent an environment using the following type:

type Env = [(Id, Value)]









Evaluation in an Environment

We write

eval env expr  ==> value

To mean that evaluating expr in the environment env returns value









QUIZ

What should the result of?

eval ["x" := 0, "y" := 12, ...] (x + 1)

(A) 0

(B) 1

(C) Runtime error


Answer: B









To evaluate a variable, look up its value in the environment!

Environment Expression Value
["x" := 5] x ==> 5
["x" := 5] x + 12 ==> 17
["x" := 5] y - 5 ==> error





Evaluating Variables

We need to update our evaluation function to take the environment as an argument:

eval :: Env -> Expr -> Value
eval env (Num n)        = ???
eval env (Bin op e1 e2) = ???
eval env (Var x)        = ???









eval :: Env -> Expr -> Value
eval env (Num n)        = n
eval env (Bin op e1 e2) = evalOp op (eval env e1) (eval env e2)
eval env (Var x)        = lookup x env




But how do variables get into the environment?









The Nano Language

Features of Nano:

  1. Arithmetic [done]
  2. Variables [done]
  3. Let-bindings
  4. Functions
  5. Recursion










3. Nano: Let Bindings

Let’s add let bindings!

e ::= n                -- OLD
    | e1 + e2 
    | e1 - e2 
    | e1 * e2
    | x
    | let x = e1 in e2 -- NEW


Example:

Environment Expression Value
[] let x = 2 + 3 in x * 2 ==> 10





Let’s extend the representation of expressions:

data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression
          | Var x                -- variable
          | ???                  -- let binding










data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression
          | Var Id               -- variable
          | Let Id Expr Expr     -- let binding





Now let’s extend the evaluation function!

eval :: Env -> Expr -> Value
eval env (Num n)          = n
eval env (Bin op e1 e2)   = evalOp op (eval env e1) (eval env e2)
eval env (Var x)          = lookup x env
eval env (Let x def body) = ???


Let’s develop intuition with examples!







QUIZ

What should this evaluate to?

let x = 2 + 3 
in
  x + 1

(A) 1

(B) 5

(C) 6

(D) Error: unbound variable x

(E) Error: unbound variable y


Answer: C







QUIZ

What should this evaluate to?

let x = 5 
in
  let y = x + 1 
  in
    x * y

(A) 5

(B) 6

(C) 30

(D) Error: unbound variable x

(E) Error: unbound variable y


Answer: C









QUIZ

What should this evaluate to?

let x = 0 
in
  (let x = 100 
   in
     x + 1
  ) + x

(A) 1

(B) 101

(C) 201

(D) 2

(E) Error: multiple definitions of x


Answer: B








Principle: Static (Lexical) Scoping

Every variable use (occurrence) gets its value from the most local definition (binding)

  • in a pure language, the value never changes once defined
  • easy to tell by looking at the program, where a variable’s value came from!








Implementing Lexical Scoping

Example 1:

               -- environment:
let x = 2 + 3  -- []
in             --   [x := 5]
  x + 1        --   |

Note: first evaluate 2 + 3 and bind x to the resulting value in the environment



Example 2:

                 -- environment:
let x = 5        -- []
in               --   [x := 5]
  let y = x + 1  --   |
  in             --   | [y := 6, x := 5]
    x * y        --   | |

Note: [y := 6] got added to the environment



Example 3:

                 -- environment:
let x = 0        -- []
in               --   [x := 0]
  (let x = 100   --   |
   in            --   | [x := 100, x := 0]
     x + 1       --   | |
  )              --   | |
  + x            --   |     

Note: [x := 100] was only added for the inner scope








Evaluating let Expressions

To evaluate let x = e1 in e2 in env:

  1. Evaluate e1 in env to val
  2. Extend env with a mapping ["x" := val]
  3. Evaluate e2 in this extended environment








eval :: Env -> Expr -> Value
eval env (Num n)          = n
eval env (Bin op e1 e2)   = evalOp op (eval e1) (eval e2)
eval env (Var x)          = lookup x env
eval env (Let x e1 e2)    = eval env' e2
  where
    v    = eval env e1
    env' = (x, v) : env    









The Nano Language

Features of Nano:

  1. Arithmetic [done]
  2. Variables [done]
  3. Let binding [done]
  4. Functions
  5. Recursion









4. Nano: Functions

Let’s add:

  • lambda abstraction (aka function definitions)
  • applications (aka function calls)
e ::= n                -- OLD
    | e1 + e2 
    | e1 - e2 
    | e1 * e2
    | x
    | let x = e1 in e2
                       -- NEW
    | \x -> e  -- abstraction
    | e1 e2    -- application        


Example:

let inc = \x -> x + 1 in 
inc 10










QUIZ

What should this evaluate to?

let inc = \x -> x + 1 in 
inc 10

(A) Undefined variable x

(B) Undefined variable inc

(C) 1

(D) 10

(E) 11


Answer: E










Representing functions

Let’s extend the representation of expressions:

data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression
          | Var Id               -- variable
          | Let Id Expr Expr     -- let expression
          | ???                  -- abstraction
          | ???                  -- application










data Expr = Num Int              -- number
          | Bin Binop Expr Expr  -- binary expression
          | Var Id               -- variable
          | Let Id Expr Expr     -- let expression
          | Lam Id Expr          -- abstraction: formal + body
          | App Expr Expr        -- application: function + actual


Example:

let inc = \x -> x + 1 in 
inc 10

represented as:

Let "inc" 
  (Lam "x" (Bin Add (Var "x") (Num 1)))
  (App (Var "inc") (Num 10))







Evaluating Functions

                      -- environment  
let inc = \x -> x + 1 
in                    -- [inc := ???]
  inc 10              -- use the value of inc to evaluate this


What is the value of inc???










Rethinking our values

Until now: a program evaluates to an integer (or fails)

type Value = Int

type Env = [(Id, Value)]

eval :: Env -> Expr -> Value



What do these programs evaluate to?

(1)
\x -> x + 1
==> ???

(2)
let f = \x y -> x + y in
f 1
==> ???

Conceptually, they both evaluate to a function that increments its argument







Now: a program evaluates to an integer or a function (or fails)

  • Remember: functions are first-class values


Let’s change our definition of values!

data Value = VNum Int
           | VFun ??? -- What info do we need to store?
           
-- Other types stay the same
type Env = [(Id, Value)]

eval :: Env -> Expr -> Value           










Function values

How should we represent a function value?

let inc = \x -> x + 1 in 
inc 10

We need to store enough information about inc so that we can later evaluate any application of inc (like inc 0, inc 5, inc 10, inc (factorial 100))





The value of a function is its code!










Representing Function Values (First Attempt)

Grammar for values:

v ::= n       -- OLD: number
    | <x, e>  -- NEW: formal + body



Haskell representation:

data Value = VNum Int
           | VFun Id Expr -- formal + body



Let’s try this!

                      -- environment  
let inc = \x -> x + 1 
in                    -- [inc := <x, x + 1>]
  inc 10              -- how do we evaluate this?










Evaluating applications

                      -- environment  
let inc = \x -> x + 1 
in                    -- [inc := <x, x + 1>]
  inc 10              -- how do we evaluate this?

To evaluate inc 10:

  1. Evaluate inc, get <x, x + 1>
  2. Evaluate 10, get 10
  3. Evaluate x + 1 in an environment extended with [x := 10]






Let’s extend our eval function!

eval :: Env -> Expr -> Value
eval env (Num n)          = ???
eval env (Bin op e1 e2)   = ???
eval env (Var x)          = ???
eval env (Let x e1 e2)    = ???
eval env (Lam x e)        = ???
eval env (App e1 e2)      = ???    









eval :: Env -> Expr -> Value
eval env (Num n)        = VNum n
eval env (Var x)        = lookup x env
eval env (Bin op e1 e2) = evalOp op (eval env e1) (eval env e1)
eval env (Let x e1 e2)  = eval env' e2
  where
    v = eval env e1
    env' = (x, v) : env
eval env (Lam x body)   = VFun x body
eval env (App fun arg)  = evalApp env (eval env e1) (eval env e1)

evalApp :: Env -> Value -> Value -> Value
evalApp env (VFun x body) vArg = eval env' body
  where
    env' = (x, vArg) : env
evalApp _ _ _                  = error "applying a non-function"









QUIZ

What should this evaluate to?

let c = 1 
in
  let inc = \x -> x + c
  in
    inc 10

(A) Undefined variable x

(B) Undefined variable c

(C) 1

(D) 10

(E) 11


Answer: E









QUIZ

And what should this evaluate to?

let c = 1 
in
  let inc = \x -> x + c
  in
    let c = 100
    in
      inc 10

(A) Error: multiple definitions of c

(B) 11

(C) 110


Answer: B









Reminder: Referential Transparency

The same expression must always evaluate to the same value

  • In particular: a function must always return the same output for a given input



Why?

> myFunc 10
11

> myFunc 10
110

Oh no! How do I find the bug???

  • Is it in myFunc?
  • Is it in a global variable?
  • Is it in a library somewhere else?

My worst debugging nightmare!









Static vs Dynamic Scoping

What we want:

let c = 1               -- <-------------------
in                      --                    \
  let inc = \x -> x + c -- refers to this def \ 
  in
    let c = 100
    in
      inc 10
      
==> 11



Lexical (or static) scoping:

  • each occurrence of a variable refers to the most recent binding in the program text
  • definition of each variable is unique and known statically
  • guarantees referential transparency:
let c = 1               -- <-------------------
in                      --                    \
  let inc = \x -> x + c -- refers to this def \ 
  in
    let c = 100
    in
      let res1 = inc 10      -- ==> 11
      in
        let c = 200
        in 
           let res2 = inc 10 -- ==> 11
           in res1 == res2   -- ==> True





What we don’t want:

let c = 1               
in
  let inc = \x -> x + c -- refers to this def \ 
  in                    --                    \
    let c = 100         -- <-------------------
    in
      inc 10
      
==> 110



Dynamic scoping:

  • each occurrence of a variable refers to the most recent binding during program execution
  • can’t tell where a variable is defined just by looking at the function body
  • violates referential transparency:
let c = 1               
in
  let inc = \x -> x + c     -- refers to this def \  \
  in                        --                    \  \
    let c = 100             -- <-------------------  \
    in                      --                       \
      let res1 = inc 10     -- ==> 110               \
      in                    --                       \
        let c = 200         -- <----------------------
        in 
          let res2 = inc 10 -- ==> 210!!!
          in res1 == res2   -- ==> False










QUIZ

Which scoping does our eval function implement?

...
eval env (Lam x body)   = VFun x body
eval env (App fun arg)  = evalApp env (eval env e1) (eval env e1)
  where
    evalApp env (VFun x body) vArg = eval ((x,vArg):env) body

(A) Static

(B) Dynamic

(C) Neither


Answer: B









Let’s find out!

                         -- env:
let c = 1                --                                          []
in                       --                                  ["c" := 1]
  let inc = \x -> x + c
  in                     --             ["inc" := <x, x + c>, "c" := 1]
    let c = 100
    in                   -- ["c" := 100, "inc" := <x, x + c>, "c" := 1]
      inc             10
      
-- 1. ==> <x, x + c>

-- 2.                 ==> 10

-- 3. x + c      ["x" := 10, "c" := 100, "inc" := <x, x + c>, "c" := 1]      

--    ==> 110

Ouch.

What went wrong?





let c = 1
in                       --                                  ["c" := 1]
  let inc = \x -> x + c  -- we want this "c" to ALWAYS mean 1!
  in                     --             ["inc" := <x, x + c>, "c" := 1]
    let c = 100
    in                   -- ["c" := 100, "inc" := <x, x + c>, "c" := 1]
      inc 10       -- but now it means 100 because we are in a new env!





Lesson learned: need to remember what c was bound to when inc was defined!

  • i.e. “freeze” the environment at the point of function definition










Implementing Static Scoping

Key ideas:

  • At definition: Freeze the environment in the function’s value
  • At call: Use the frozen environment to evaluate the body
    • instead of the current environment
                         -- env:
let c = 1                --                                          []
in                       --                                  ["c" := 1]
  let inc = \x -> x + c
  in                     --        ["inc" := <fro, x, x + c>, "c" := 1]
                         --             where fro = ["c" := 1]
    let c = 100
    in                   -- ["c" := 100, "inc" := <fro, x, x + c>, ...]
      inc             10
      
-- 1. ==> <fro, x, x + c>

-- 2.                 ==> 10
--               add "x" to fro instead of env:
-- 3. x + c      ["x" := 10, "c" := 1]      

--    ==> 11

Tada!










Function Values as Closures

To implement lexical scoping, we will represent function values as closures

Closure = lambda abstraction (formal + body) + environment at function definition



Updated grammar for values:

v ::= n
    | <env, x, e>  -- NEW: frozen env + formal + body
    
env ::= []
      | (x := v) : env



Updated Haskell representation:

data Value = VNum Int
           | VClos Env Id Expr -- frozen env + formal + body










Evaluating function definitions

How should we modify our eval for Lam?

data Value = VNum Int
           | VClos Env Id Expr -- env + formal + body
           
eval :: Env -> Expr -> Value
eval env (Lam x body) = ??? -- construct a closure


Recall: At definition: Freeze the environment in the function’s value

Exact code for you to figure out in HW4










Evaluating function calls

How should we modify our eval for App?

data Value = VNum Int
           | VClos Env Id Expr -- env + formal + body
           
eval :: Env -> Expr -> Value
eval env (App e1 e2) = ??? -- apply the closure


Recall: At call: Use the frozen environment to evaluate the body

Exact code for you to figure out in HW4



Hint: Recall evaluating inc 10:

  1. Evaluate inc to get <fro, x, x + c>
  2. Evaluate 10 to get 10
  3. Evaluate x + c in (x := 10) : fro



Let’s generalize to e1 e2:

  1. Evaluate e1 to get <fro, param, body>
  2. Evaluate e2 to get v2
  3. Evaluate body in (param := v2) : fro










Advanced Features of Functions

  • Functions returning functions
    • aka partial applications
  • Functions taking functions as arguments
    • aka higher-order functions
  • Recursion

Does our eval support this?










QUIZ

What should the following evaluate to?

let add = \x y -> x + y
in
  let add1 = add 1
  in
    let add10 = add 10
    in
      add1 100 + add10 1000

(A) Runtime error

(B) 1102

(C) 1120

(D) 1111


Answer: D










Partial Applications Achieved!

Closures support functions returning functions!

let add = \x -> (\y -> x + y) --                           env0 = []
in                         -- env1 = ["add" := <[], x, \y -> x + y>]
  let add1 = 
        add 1 -- eval ("x" := 1 : env0) (\y -> x + y) 
              --   ==> <["x" := 1], y, x + y>
  in       -- env2 = ["add1" := <["x" := 1], y, x + y>, "add" := ...]
    let add10 = 
      add 10 -- eval ("x" := 10 : env0) (\y -> x + y) 
             --   ==> <["x" := 10], y, x + y>
    in  -- env3 = ["add10" := <["x" := 10], y, x + y>, "add1" := ...]
      add1 100 -- eval ["y" := 100, "x" := 1] (x + y) 
               --   ==> 101
      + 
      add10 1000 -- eval ["y" := 1000, "x" := 10] (x + y) 
                 --  ==> 1010

==> 1111                 










QUIZ

What should the following evaluate to?

let inc = \x -> x + 1
in
  let doTwice = \f -> (\x -> f (f x))
  in
    doTwice inc 10

(A) Runtime error

(B) 11

(C) 12


Answer: C









Higher-order Functions Achieved

Closures support functions taking functions as arguments!

let inc = \x -> x + 1                                -- env0 = []
in                              -- env1 = [inc := <[], x, x + 1>]
  let doTwice = \f -> (\x -> f (f x))
  in  -- env2 = [doTwice := <env1, f, \x -> f (f x)>, inc := ...]
    ((doTwice inc) -- eval ("f" := <[],x,x + 1> : env1) (\x -> f (f x))
                   -- ==> <("f" := <[],x,x + 1> : env1), x, f (f x)>
                   
      10)          -- eval ["x" := 10, "f" := <[],x,x + 1>, ...] f (f x)
      
-- f   ==> <[], x, x + 1>
-- x   ==> 10
-- <[], x, x + 1> 10 ==> eval ["x" := 10] x + 1 ==> 11
-- <[], x, x + 1> 11 ==> eval ["x" := 11] x + 1 ==> 12
    
==> 12    










QUIZ

What does this evaluate to?

let f = \n -> n * f (n - 1) 
in
  f 5

(A) 120

(B) Evaluation does not terminate

(C) Error: unbound variable f


Answer: C








let f = \n -> n * f (n - 1) 
in -- [f := <[], n, n * f (n - 1)>]
  f 5 -- eval [n := 5] (n * f (n - 1))
      --  ==> unbound variable f!!!

Lesson learned: to support recursion, you need to put the function itself back into its closure environment before the body gets evaluated!










The Nano Language

Features of Nano:

  1. Arithmetic [done]
  2. Variables [done]
  3. Let bindings [done]
  4. Functions [done]
  5. Recursion [you figure it out in HW4]









That’s all folks!